The UK Inflammatory Breast Cancer Research Programme

BSBR Research Afternoon November 2015

Sarah Vinnicombe and Fedor Berditchevski
Introduction

• Inflammatory breast cancer (IBC) is rare
• ≈ 2.5% all cases of breast cancer
• Stage T4d by definition
• Dire prognosis (median 5 y. survival ≈ 40%)
• Understanding of IBC hampered by lack of consistent, documented diagnostic criteria
• International panel released consensus statement on diagnosis & management in 2011

\(^1\text{Dawood et al. Ann Oncol 2011;22:515-23}\)
Aims of the UK Group

• To coordinate UK practice and research into IBC

• To develop a base for academic and translational research into IBC

• To optimise treatment of IBC through research-driven clinical medicine
Where do we start?

- Ensure we are talking about the same entity!
- Established diagnostic criteria
- Uniform investigation and description
- Uniform data collection
Recommended minimum criteria:

- Rapid and progressive onset of breast erythema (over >30% of breast) or peau d’orange +/- an underlying mass with a maximum symptomatic duration of 6 months
 - To aid differentiation from neglected LABC

- Histopathological confirmation of breast cancer on preoperative biopsy
 - No specific histological or molecular markers
Pathology

- Receptor status

- Ideally, skin biopsy of 1 or 2 representative areas of erythema/peau d’orange
Documentation of medical history and clinical findings

- Duration and nature of symptoms
- Description of breast appearance and examination including proportion of breast involved by erythema (*NB clinical photographs*)
- Degree of extension beyond the breast if present
- Size and location of any breast mass, presence of palpable axillary and supraclavicular fossa nodes
- Presence of any symptoms or signs of metastatic cancer
- A clear statement that the condition fulfills the diagnostic criteria for inflammatory breast cancer
Role of Imaging in IBC

• Diagnosis and characterisation
• Image guided biopsy
• Delineation of locoregional disease
• Identification of distant metastases
• Prognostication
• Prediction and evaluation of response to R_x
Local and whole body staging

- Mammography and US as normal
- Ultrasound SCF if axilla abnormal
- US guided biopsy: focal/diffuse US abnormality
- MRI:
 - recommended where no parenchymal lesion shown by XRM or US
 - recommended for monitoring of response to therapy
- Whole body staging: absolutely indicated
Mammography (XRM): Findings

- Frequently difficult (pain, breast enlargement)
- Key features:
 - skin and trabecular thickening (80%)
 - stromal thickening/distortion
 - diffuse increase in density
 - better depicted with digital mammography (FFDM)
- Masses: often absent
- Calcification rarer cf. locally advanced BC
- Axillary nodal enlargement; 30%
Mammography
Ultrasound

Advantages over mammography:

• Patient acceptability

• Better identification (& therefore biopsy) of focal lesions

• Diagnosis of multicentricity
Ultrasound: Findings

- Skin thickening
- Dilated lymphatics
- Generalised hyperechoic oedema
- Distortion, hypoechogenicity, acoustic attenuation
- Discrete focal abnormalities (90% cases)
- Multifocality/centricity
Ultrasound
‘Novel’ Imaging

NCCN guidelines v.2:

• Level 2A evidence for breast MRI

• Level 2B evidence for FDG-PET/CT
 - very helpful for equivocal diagnostic CT CAP
 - may obviate need for isotope bone scan
 - can identify unsuspected regional nodal disease as well as distant metastases
MRI

- **Diagnosis**
 - Most accurate test for identification of focal lesion
 - Can differentiate between IBC and LABC\(^1\)
- **Baseline overview of extent of local disease**
- **Most accurate test for interim and final response assessment\(^2\)**

\(^1\)Girardi et al. *Radiol Med (Torino)* 2012
\(^2\)Shin et al. *Br J Radiol* 2011
MRI: Key Findings

- Increased breast size, skin thickening (>90%)
- Diffuse oedema, skin and prepectoral oedema
- Focal parenchymal lesion: >95%
- Non-mass enhancement, linear/nodular
- Skin enhancement (intradermal foci): >30%
- Multifocal/multicentric disease: >70%
- Axillary adenopathy: >80%

Girardi et al. Radiol Med (Torino) 2011
MRI of IBC

T2 weighted imaging:
• prepectoral oedema suggests IBC1

1Uematsu et al. Breast Cancer 2012
2Renz et al. Acad Radiol 2008
Multiparametric MRI
mpMRI
FDG-PET/CT

• One-stop shop
 • Regional lymph node involvement
 • Occult distant metastases eg. bone1

• Prognostication??
 • Survival associated with fall in SUV_{max} on MVA2
 - resolution of tumour FDG uptake resulted in 80% lower probability of death

• Early response prediction3

1Groheux et al. J Nucl Med 2013
2Carkaci et al. Eur J Nucl Med Mol Imaging 2013
3Kolesnikov-Gauthier et al. Breast Ca Res Treat 2012
FDG-PET/CT of IBC

- Retrospective review, n=41\(^1\)
- Increased FDG uptake in skin (100%)
- Increased FDG uptake in breast (98%)
- Axillary lymph node uptake (90%), confirmed in 70%
- 1 FN axillary node, 0.7cm diameter
- Subpectoral LN in 44%, confirmed in 30%

\(^1\)Carkaci et al. J Nucl Med 2009
Identification of Distant Metastases

• 20-40% have distant metastases at presentation
• CT: identifies asymptomatic mets in ≈ 25-30%
• Pleural metastases more frequent cf. LABC\(^1\)
• PET/CT: 30-50% (mediastinal LN, bone, liver)\(^2,3\)
• ≈ 20% occult with conventional staging\(^2\)
• May improve prognosis (stage migration)

\(^1\)Mvere et al. Clin Oncol 2011
\(^3\)Alberini et al. Cancer 2009
PET/CT

From: Carkaci et al., J Nucl Med 2009
Yang et al., Breast Cancer Res Treat 2008
Identification of Distant Metastases

- Always check the MRI!
Response Assessment

- Local disease: MRI
 - Interval assessment post 1-2 # NAC
 - Prediction of response
 - Final response assessment
 - Overall accuracies \(\approx 70\%^{1,2} \)
 - High FN rate - caution needed in diagnosis of CR
 - ? Poorer for non-mass lesions
- Locoregional & distant disease: PET/CT

\(^1\)Shin et al. Br J Radiol 2011
MRI: Response Assessment
MRI: Response Assessment
Future Directions

• Further research needed on standardisation of functional techniques and response criteria

• Studies should explore role of mpMRI & PET/CT in
 • Prognostication
 • Early response prediction

• Future trials should include MRI and PET/CT wherever possible
How we can make progress in the UK

• Publicise guidelines/consensus manuscript\(^1\)

• Establish registry and database

• Establish Tissue bank (network)

\(^1\)Rea D et al. Br J Cancer. 2015 Apr 28;112(9):1613-5

UK Inflammatory Breast Cancer Working group
Diagnostic details: clinical, radiological, pathology

Treatment details: systemic therapy, surgery, RT

Imaging

Outcomes: locoregional, distant, breast cancer specific and overall survival
Database

<table>
<thead>
<tr>
<th>Centre</th>
<th>No. IBC cases submitted</th>
<th>Years searched</th>
<th>Total invasive cancer cases</th>
<th>Approximate incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birmingham</td>
<td>22</td>
<td>1997-2010</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cardiff</td>
<td>20</td>
<td>2010-2014</td>
<td>5500</td>
<td>0.4%</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>74</td>
<td>2007-2013</td>
<td>4473</td>
<td>1.6%</td>
</tr>
<tr>
<td>Galloway</td>
<td>52</td>
<td>1993-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glasgow</td>
<td>17</td>
<td>2011-2013</td>
<td>2703</td>
<td>0.6%</td>
</tr>
<tr>
<td>Leeds</td>
<td>44</td>
<td>2005-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London-Guys-Barts</td>
<td>9</td>
<td>2008-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2008-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nottingham</td>
<td>136</td>
<td>1996-2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poole</td>
<td>5</td>
<td>2011-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salisbury</td>
<td>4</td>
<td>2012-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southampton</td>
<td>29</td>
<td>2008-2014</td>
<td>2872</td>
<td>1.0%</td>
</tr>
<tr>
<td>Stafford</td>
<td>4</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour Characteristics</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>171</td>
<td>41.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>219</td>
<td>53.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive ductal</td>
<td>364</td>
<td>84.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive lobular</td>
<td>44</td>
<td>10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed ductal/lobular</td>
<td>6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed ductal/other</td>
<td>5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>11</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oestrogen Receptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>243</td>
<td>55.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>191</td>
<td>43.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progesterone Receptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>127</td>
<td>38.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>207</td>
<td>62.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Database

<table>
<thead>
<tr>
<th>Tumour Characteristics</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2 Receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>128</td>
<td>30.3</td>
</tr>
<tr>
<td>Negative</td>
<td>294</td>
<td>69.7</td>
</tr>
<tr>
<td>Missing</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Triple negative tumour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>106</td>
<td>25.2</td>
</tr>
<tr>
<td>No</td>
<td>315</td>
<td>74.8</td>
</tr>
<tr>
<td>Missing</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Lympho-vascular involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>128</td>
<td>39.9</td>
</tr>
<tr>
<td>No</td>
<td>193</td>
<td>60.1</td>
</tr>
<tr>
<td>Missing</td>
<td>117</td>
<td></td>
</tr>
</tbody>
</table>
- 20.4% of patients receiving neo-adjuvant chemotherapy achieved a pathological complete response in the breast;

- The estimated 5-year overall survival was 60.2% for stage III patients.

- 131 patients (38.7%) developed distant metastases with the brain being the first site in 20.4% of cases.

- Median overall survival of stage 3 patients was 90 months whilst median overall survival of the 87 patients who were stage 4 at presentation was 21 months.
The next steps

• Establish working IBC team in collaborative centres – oncologist, radiologist, surgeon, pathologist

• Define research priorities, develop theme-focused research plan (e.g. the role of stroma in IBC)

• Develop well defined collaborative strategies
Acknowledgements

• **Birmingham**
 - Fedor Berditchevski
 - Abeer Shaaban
 - Irini Danial

• **Barts**
 - Louise Jones
 - Deidre Ryan

• **Leeds**
 - Abeer Shaaban
 - Nisha Sharmat
 - Barbara Dall
 - Hiba Fatayer:

• **Southampton**
 - Hayley MacKenzie
 - Ramsey Cutress
 - Emily Sherwin

• **Dundee**
 - Sarah Vinnicombe

• **Glasgow**
 - Iain MacPherson
 - Lazlo Romics
 - Edinburgh
 - Monika Brzezinska

• **Velindre, Cardiff**
 - Annabel Borley

• **GUH, Ireland**
 - Aoife Lowery

• **Nottingham**
 - Steve Chan
 - Paul Moseley

• **Guys**
 - Elinor Sawyer

• **Stafford**
 - Vidya Raghavan
 - Sircar Tapan

UK IBC CONSORTIUM